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Abstract

present a procedure which generates all the facets of

a 0-1 programming polytope P with positive coefficients in a

finite number of steps. The procedure is based upon the rela-

tionship between facets of P and facets of the knapsack poly-

topes corresponding to certain nonnegative combinations of in-

equalities implied by P. Finiteness of the procedure is proven

by examining the relationship of the valid inequalities gener-

ated during each step of the procedure in connection with a

result due to Chvatal . In addition to exploring the proper-

ties of inequalities generated by the procedure, several proper-

ties of the classes of valid inequalities for the knapsack poly-

tope defined in Balas and Balas and Jeroslow t are pre-

sented. In particular, the set of canonical inequalities\"_Q

is shown to belong to Chv'atal's elementary closure.
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A PROCEDURE FOR GENERATING THE CONVEX HULL

OF A

0-1 PROGRAMMING POLYTOPE

WITH

POSITIVE COEFFICIENTS

by

Joseph B. Mazzola

1. Introduction

Consider the 0-1 programming problem

max Z cjx.
jEN j

(MKP)

Z ax < ao i E M = 1,2 .. )m (i)
jEN 0 _ ,0

xj = 0 or 1, j E N, (2)

where a. > 0, j E N U (01, i E M. This problem is often refer-

red to as the multidimensional knapsack problem or as a monotone

0-1 program. Such problems arise in many useful mathematical

programming models such as the discrete capital budgeting

problem.

We shall find it useful to also represent (MKP) in the

matrix form max cx

Ax < A0

X. = 0 or 1, j E N.

Also denote the ith inequality of (1) as a x < a0 .

The set

P = P(A,AO) = conv(x E RnIAx < AO, xj - 0 or 1, i E NJ

will be called the multidimensional knapsack polytope



corresponding to the system Ax < A0 . The inequality

E a.x. < a O,
jEN - (3)

where aj > 0, j E N, is referred to as a knapsack inequality

and is sometimes denoted as ax < a0  or simply (a,a0 ). The

set P(a,a0 ) is called its corresponding knapsack polytope.

An inequality sx t a0 is called a facet of P if i) ax <a 0
is a valid inequality for P, i.e. ax < a0 is satisfied for all

x E P, and ii) there exist d affinely independent points of P

which satisfy ax =a 0 9 where d is the dimension of P. It is

well known that d = INI, i.e. P is full-dimensional, if and only

if a < a for all j E N, i E M Unless otherwise stated, we

shall assume P to be full-dimensional.

Clearly the advantage of explicitly knowing the set ''(P)

of all facets of P is the fact that (MKP) can be solved as a

linear program. Since the number of such facets is typically

at least exponential, one perhaps ought not aspire to the goal

of obtaining them all in a practical setting. However, a finite

procedure for generating these facets or perhaps strong valid

inequalities for P could be useful in the sense that the con-

straint set Ax < A0 could be amended to include some of these

valid inequalities in the hope of closing the gap between the

optimal value of (MKP) and the value of the linear programming

relaxation.

It is natural to seek the relationship between the facets

of the multidimensional knapsack polytope P and the facets of

the individual knapsack polytopes P(aia ) corresponding to
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each constrairit in (1). In general, P has facets which are not

facets of any P(ai,ao), i E M, and many facets of the P(a ,ao)

are not facets of P. Knapsack inequalities and facets of their

corresponding polytopes have received considerable attention in

the literature [1],[2],[3],[4],[5],[9],[12],[13], and [14].

This paper deals with the task of generating ZK(P) by exploring

this relationship.

Balas and Zemel [5] have shown that any facet of P can be

M obtained by a secuence of operations which involves the comple-

menting of certain variables, the application of a generalized

lifting procedure, and a subsequent recomplementing of the

relevant variables. (See also Wolsey [13].) This process can

be viewed as a finite procedure for generating all the facets

of P: however, the generalized lifting procedure involves the

solution of many smaller multidimensional knapsack problems.

When specialized to a 0-1 knapsack problem, the systematic

application of this sequence of operations yields a finite pro-

cedure for generating all the facets of the knapsack polytope,

and it then only requires the solution of many 0-1 knapsack

problems.

As previously suggested, we are exploring the relationship

between the facets of the multidimensional knapsack polytope P

and those of certain knapsack polytopes which are derived from

the constraints of (1). We shall therefore assume that given

any knapsack inequality, we can generate the set of all facets

of its corresponding knapsack polytope in a finite number of

steps by applying a procedure such as the one noted above.



An iterative procedure for generating the facets of P is

presented in the next section. After showing that each iteration

(step) of the procedure requires a finite number of operations,

we show that the procedure will indeed generate all the facets

of P in a finite number of steps. This is accomplished by

examining the inequalities generated during each iteration in

relation to a result due to Chvatal [7]. In the course of ex-

ploring this relationship, some properties concerning the family

of valid inequalities for the knapsack polytope defined in [1

are stated and proved. In particular, the set of canonical in-

equalities [3] are shown to belong to Chv'atal's elementary clo-

sure.

2. A Finite Procedure for Generating AP-)
In this section we describe a procedure for generating the

set 'Y(P) of all facets of P. The procedure is shown to be com-

plete in the sense that it generates all facets of P, and it is

also shown to be finite. We first establish some necessary

definitions.

Given the set of inequalities (1), a subset K N is said

to be a cover for (1) if

Sa > a1  (4)
jEK J  0

for some i E M.

The cover K is said to be minimal if

a i < a i E M (5)
jET - aO,

for all proper subsets T of K.

Obviously, if K is a minimal cover for (1), then it is a
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minimal cover for aix < ao for at least one i E M.

For any point x E [0,1 n , where n = INI, define supp(x)

= (j E Nix. = 13. As previously mentioned, an inequality

ax < a0 is said to be valid for the polytope P if ax < a0 is

satisfied for all x E P.

An inequality ax < a0 is said to dominate the inequality

bx < b0 , where a0 and b 0 are not both 0, if there exists a real

number X > 0 such that

Xa0 <b

Xaj > bj, for all j E N.

If in addition kak > Xbk for some k E N, then ax < a0 is said

to strictly dominate bx < b0.

We now introduce a second notion of dominance. An in-

equality A is said to c-dominate an inequality B if every 0-1

point satisfying A also satisfies B. Additionally, if there

exists a 0-1 point x satiEf,-'ng B but not A, then A strictly

c-dominates B.

Clearly, c-dominance is a weaker property than dominance.

We now present an example which shows that it is strictly weaker.

Example 1. Consider the inequalities

2xI + x2 + x3 + x4 < 2 (6)

and

x1 + x 2  < 1. (7)

Inequality (6) does not dominate inequality (7); yet, it

c-dominates it.

This notion of c-dominance will play an important role in

defining the procedure to follow. We now state some results
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which should provide some insight into why such a notion is

desirable.

Proposition 1. The inequality

E a.x. < a0  (3)
jEN

c-dominates

E b.x. < b 0  (8)
jEN . -0

if and only if every cover M for (8) is also a cover for (3).

Proof. Suppose there exists a cover C for (8) which is not

a cover for (3), and let I E [0 ,11 n be defined by supp( ) = C.

Since C is a cover for (8) but not for (3), we have that

satisfies (3) but not (8), and hence (3) does not c-dominate (8).

Conversely, suppose that (3) does not c-dominate (8). Then

there exists a 0-1 point 5 such that a < a0 but bc > bO . Let

C = supp(l). Obviously, C is then a cover for (8) but not for

(3). 1i

We therefore see why the term c-dominate was chosen. The

following corollary follows directly from the definition of

c-dominance and that of the knapsack polytope P(a,a0 ).

Corollary 1.1. The inequality ax < a0 c-dominates bx < b0

if and only if P(a,a0 ) E P(b,b0 ).

Corollary 1.2. If the inequality ax < a0 c-dominates

bx < b0 and if Ox < 00 is a valid inequality for P(b,b0 ), then

it is a valid inequality for P(a,ao).

The proof follows immediately from the fact that

P(a,a0 ) E P(b,b O ) if ax < a 0 c-dominates bx < b O .

The next result concerns a relationship between some of

the facets of two different knapsack polytopes corresponding to

valid inequalities for P.



Proposition 2. Let ax < a0 and bx < b0 both be valid in-

equalities for the multidimensional knapsack polytope P. If

ax < a0 c-dominates bx < bo, and if some facet x < 0 of

P(b,b O ) is also a facet of P, then Ox < O0 is a facet of P(a,ao).

Proof. Since ax < a0 and bx < b0 are both valid inequali-

ties for P, and since ax < a0 c-dominates bx < bo, we have

P a P(a,aO) 0 P(b,bo). From the preceding corollary it follows

that Ox < 0 is a valid inequality for P(a,a0 ). Since it is a

facet of P, there exist n affinely independent points of P,

and hence of P(a,aO) which satisfy Ox = 0 Therefore Ox < 0

is a facet of P(a,ao). Ii

Let T be an arbitrary, finite set of knapsack inequalities

given by
1: b~x . < bO s. .I o( )
jEN 0 -

and let
F(T) : U J(p(b isb ))

(bi,b0) E T

where for any polytope Q, :'(Q) is the set of all its facets.

Also, let t
C(T) = [bx < bo1(b,bO) Z k.(bi,bl) >0,(bi,b)ETI,

0-0 i=I  0 ' 0

i.e. C(T) is the set of all nonnegative combinations of in-

equalities in T.

A set R a C(T) is said to c-represent C(T) if given any

inequality (b,bo) E C(T), there exists an inequality (a,ao) E R

such that (a,a0 ) c-dominates (b,b). Equivalently, R is also

said to be a c-representation of C(T). Notice that C(T) is a

c-representation of itself.
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By definition, the set C(T) is infinite. However, every

inequality (b,b0 ) E C(T) corresponds to a unique set of covers,

i.e. subsets of N. Since the number of such distinct sets of

subsets is finite, we have just proven the following proposition.

Proposition 3. There exist c-representations of C(T)

which are finite in cardinality.

Appropriately, such sets shall be called finite c-represen-

tations of C(T). We next state a result which will allow us to

actually construct a finite c-representation of C(T).

Proposition 4. Let K = (CI,C2,...,0CPI be a set of covers

for (9)T ' There exists X = (kiX 2,...,X t with

i =l,...,t, such that each set CR, = l,...,p is a cover for

the inequality

t • t
E E b )xj < Z XZb (i04
jEN i=l J J  - l i 0

if and only if there exists a solution. yii = l,...,t to the

system

i =1

where for each 1 1,...,p and i = 1,...,t

= b j - bo . (12)
j EC

X
In fact, any solution y., i = 1,...,t will yield such a

X by setting X. = Y., i =t.

Proof. Suppose there exists a nonnegative vector K such

that each set C R" R= 1,.-.,p, covers (10). . We then have
E ( X.b ) > t b

jEC i=l J i=l i 0
1 e

or equivalently
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t i
Z ( Z b. - b)X > 0, .. ,p. (14)

i=1

Therefcre, in light of (12) we see that (11)K is satisfied by

Yi =  kit i =  1. . t

Conversely, if (11)K is satisfied for some yi, i = l,...,t,

then setting Xi = yi, = l,...,t, we observe that the

Xi, i= 1,...,t satisfy (14) and hence they also satisfy (13).

Consequently, each set C%, = 1,...,p will be a cover for

., We can thus construct a finite c-representation G of C(T)

as follows:

(a) Enumerate the set 3 of all covers for (9)T' and
then generate 1, = (C)'N¢],where '(C) is the

power set (set of all subsets) of C.
A

( ) Starting with G = 0, for each K E decide whether

the system (11)K is consistent. If (11)K is incon-

sistent, go on to the next set K E . Otherwise,

choose any one solution K to (1)"K' add the in-
A

equality (10) k to G, and continue on to the next K.

This algorithm will clearly generate a finite c-represent-

ation G of C(T) in a finite number of steps. Although any

finite c-representation G would suffice within the framework of

the procedure for generating (P) which is soon to be defined,

it turns out that we can further restrict our attention to

certain proper subsets of G.

For any finite c-representation G of C(T), any subset M(T)

of G satisfying both
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i) M(T) = ((a,a 0 ) E G I there does not exist (b,bo) E G

such that (b,b0 ) strictly c-dominates (a,ao)3,

and

ii) if (a a0), (a ,a0) both belong to M(T) and (a ,ao)

c-dominates (ae,a0), then X = 0,

is said to be a minimal complete set of nonnegative combinations

of inequalities in T.

We immediately remark that M(S) is not uniquely defined

since it depends upon both the particular finite c-representation

G from which it is extracted and its arbitrary selection from

among all those subsets of G satisfying properties i) and ii) of

the definition. Therefore, when we say M(T), we mean some arbi-

trary but fixed M(T).

It should also be observed that if we use the previously

defined algorithm for generating a finite c-representation G of

C(T), then since property ii) is satisfied by all inequalities
A

in G (by construction), G will give rise to a unique set M(T).

This M(T) can be identified in a finite number of steps by a

process which uses a binary representation of (C) (i.e. for

each set K E V(2 ), the corresponding binary vector will have

a 1 as the jth component if and only if the jth cover of t

belongs to K) and then selects those inequalities whose corres-

ponding set of covers are maximal with respect to the lexi-

cographic ordering of the binary vectors.

We are now ready to state the procedure for generating all

the facets of P.
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A Finite Procedure for Generatin 7(P)

Step 0. Let SO denote the set (1) of original knapsack inequa-

lities, and let F 0(S0) = S0 '

Step 1. a) Generate M(S0 ).
1

b) Generate F (So) = F(M(S0 )).

Step k. a) Generate M(Skl), where SkI F kl(So).

b) Generate Fk(S0) = F(M(Sk-1)).

It should be clear from the previous discussion that each

step of the procedure requires a finite number of operations.

By utilizing a result due to Chva'tal in [7], we show that there

exists a nonnegative integer p such that G'(P) E FP(S0 ). The

smallest such integer p shall be called the f-rank of SO. We

first state a definition and a theorem from [7] for reference.

Let U be the general set of linear inequalities

Cx < C

Definition. (Chvatal [71) An inequality ax < a0 belongs

to the elementary closure of U, denoted e (U), if there exists

X > 0 such that

XC = a = integer

[C a 0 ,

where [r] is the greatest integer less than or equal to r.

Further, let ek (U) = e (e k-l (U)).



-12-

Theorem 1. (Chvatal [7]) There exists an integer q such

that
(PCC)) = q(u).

The smallest such integer q is called the rank of U in [7], however,

we shall refer to it as the k-rank of U.

Letting S be the set of knapsack inequalities (1) and S*

be S together with the constraints 0 : x. _ 1, j E N, we are now

ready to state and prove the following result.

Theorem 2. For the set S of knapsack inequalities, if for

some integer h > 0, the inequality bx < b0 belongs to eh(S*), then

there exists an inequality ax < a0 in M(Fh-l(S)) such that

ax < a0 c-dominates bx < b 0 . In particular, if bx < b0 is a facet

of P, then bx < b0 belongs to Fh(S).

Proof. We prove the theorem by induction on h. If bx < b0

belongs to e1 (S*), then there exist nonnegative multipliers Xi, i =

1, 2, ... , m = IMI, 6. and yj, j = 1, 2, ... , n = INI, such that

m
E X.a j + 6. - Yj = bj, for all j E N

and

[be] s bo,

where
m i n

bo= Z Xia0 + E ..i=l j=l J

A
Consider the inequality E bjx. < b0 given by

jEN 3 -
m

It" = i kXia., for all j E N U £0).

A A A
Clearly bx < b0 belongs to C(S), and also bx < b0 c-dominates
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bx < b*, which in turn c-dominates bx < bO. Since M(S) is a

(minimal) complete set of positive combinations of inequalities

in S, there exists an inequality ax < a0 belonging to M(S)

AA
M(FO(S)) which c-dominates bx < b0 and thus bx < b0 also.

Now, inductively assume that the result holds for e h-l(s*),

where h is some positive integer. If bx < b0 belongs to eh(s*),

then there exists a set of t inequalities in e h-l(S*) given by

k kckx < ck, k = l, 2, ... , t,

and nonnegative multipliers ek, k = 1, 2, ... , t such that

t
E k = bio for all j E N,~k=l K

and

t k 0t ekck] < b0 .
k=l

From the induction hypothesis, for each k = 1, 2, ... ,

there exists an inequality

dkx < d 
k

h2 k kk k
belonging to M(Fh (S)) such that d x < d0  c-dominates ckx < cO.

Let 7k = Gd(P(dk dk)) = f f j : f i = 1,2,..., £(k)j
0 jEN 1- 3  - Io 1

be the set of facets defining the knapsack polytopes

P(dk, dk ) = conv(xldkx < dk x = 0 or 1, j E NJ

0 0,

for each k = 1, 2, ... , t.

k k k k
Since P(d ,d0 ) _ P(c ,c0 ) for each k = 1, 2, ..., t, there

exist multipliers i = 1, 2, ... , = satisfying
R(k)

i a c , for all j E N,
i=l i

and
1(k) 1 10 0Z y o < Co0

LiA
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As before, bx < b0 is c-dominated by

t t k
r e c )Xj < rek" (15)

jEN k=O 
- k=O

By substitution, (15) is dominated by

t J(k) k t 9(k) k
( f eXk < E I e G

jEN k=0 i=l k 1 k=O i=l ki io

which is a nonnegative combination of inequalities in Fh-l(S).

By definition, there exists an inequality ax < a0 belonging to

M(Fh-1(S)) such that ax < a0 c-dominates (16) and hence bx < b0 .

4 The last assertion of the theorem follows directly from

Proposition 3, and the fact that if bx < b0 is a facet of P, then

it is also a facet of P(b,bo).

It immediately follows from this theorem and Theorem 1 that

the previously stated procedure will indeed generate all the

facets of P in a finite number of steps. We also see that the

f-rank of S is less than or equal to the k-rank of S*.

Obviously this procedure requires a large number of opera-

tions to generate 31(P). It is therefore natural to investigate

the nature of those inequalities obtained after one pass of the

procedure. In particular, we shall compare such inequalities to

those belonging to the elementary closure of S*. In order to do

this, we call FI(S) the elementary f-closure of S and henceforth

refer to e1 (S*) as the elementary k-closure of S*. These two

elementary closures are the next topic of discussion.

3. Properties of the Elementary Closures.

Recall that we have already established that the f-rank of

S is less than or equal to the k-rank of S*, where S is the set
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of knapsack inequalities (1) and S* is S Zogether with the con-

straints 0 <x < 1, j E N. In the same manner, it follows from

Theorem 2 that any facet contained in the elementary k-closure of

S* will also be obtained in the elementary f-closure of S. We

shall characterize those inequalities and in particular, those

facets of P which are obtainable in the elementary k-closure of S*.

We then apply this characterization to an example showing that

certain facets of P belonging to the elementary f-closure of S can

not be obtained in the elementary k-closure of S*. We conclude

from this that the elementary f-closure of S generally contains

more facets of the multidimensional knapsack polytope P than does

the elementary k-closure of S*.

Once again let U be the general set of linear inequalities

Cx < C0 .

We now characterize those inequalities which belong to el(U) and

note that the sufficiency of condition (17) is given in L7J.

Proposition 5. The inequality ax < a0 belongs to e (U)

if and only if
max (ax I Cx < COI < a 1. (17)

Proof. Condition (17) holds if and only if the system of

linear inequalities

Cx < C0

ax > a 0 +1

is inconsistent. This system is inconsistent if and only if the

following system is consistent (see, for example, [11])

XC = a

XC0 < a 0 + 1

A > 0,
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which is true if and only if ax < a0 belongs to e (U). II

Observe that the testing of condition (17) merely involves

the solution of a linear program.

This proposition is now used in the following example which

shows that a facet of the multidimensional knapsack polytope P can

belong to the elementary f-closure of S without belonging to the

elementary k-closure of S*.

Example 2. Consider the set T consisting of the two knap-

sack inequalities

7x 1 + 6x 2 + 4x 3 + 3x4 + 2x 5 + 2x6 + 7 x8  7 (18)

2x 1  +X2 +2x 3  X4 + x 5 + x6 + x7 + x8 < 3. (19)
~A

Let P be the multidimensional knapsack polytope corresponding to

the system defined by T. Adding these two inequalities together,

we obtain
9x1 + 7x 2 + 6x 3 + 4x4 + 3x5 + +2x7 + 2x8  10 (20)

which belongs to C(T). Now, the inequality

2x + x2 + x3  + x5  + x7  <2 (21)

is easily shown to be both a facet of the knapsack polytope
A

corresponding to (20) and also of P. Therefore, (21) belongs to

the elementary f-closure of T. However, it can not belong to the

elementary k-closure of T*(i.e. T together with 0 < x. < 1,

j = 1, 2, ..., 8) since

max2xI + x 2 + x 3 + x5 + x7tx satisfies both (18) and (19),

0 < Xj l, j = l,2,...,83 = 3.

We thus see that the elementary f-closure generally contains

more facets of P than does the elementary k-closure. The next

example shows that the elementary f-closure unfortunately does not

contain all the facets of P.
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Example 3. Consider the set W of inequalities

6x1 + 3x2 + x3 + 3x4 + x5 < 6 (22)

x + 3x2 + 3x 3 + x4 + 3x5 < 8, (23)

and let P denote the corresponding multidimensional knapsack poly-

tope. The inequality

3x + 2x2 + X3 + + x5 < 3 (24)

is a facet of P. However, inequality (24) is not valid for either

of the knapsack polytopes Pl, P2 corresponding to (22) and (23),

respectively. Nor is it a valid inequality for any knapsack poly-

tope arising from a nonnegative combination of (22) and (23).

This is easily seen if one considers that there is no nonnegative

combination of (22) and (23) for which the sets M, = £2, 3, 41 and

M2 = (2, 3, 51 are both covers; whereas, M1 and M2 both cover (24).

Therefore, inequality (24) does not belong to Fl(W).

We conclude our discussion by presenting some properties of

the classes of valid inequalities derived from minimal covers for

the knapsack polytope P(a,a O ) which were defined in [1] and [3].

Recall that for any minimal cover M of the knapsack inequality (3),

the set E(M) = M U M', where

MI = [j E N\MIaj > ajl

and

a. = max
jEM aj

is called the extension of M to N. Letting 'I. be the set of all

minimal covers for (3), Balas an4 Jeroslow have shown in 13]
that inequality (3) is equivalent to the set of canonical ih-

equalities
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xj < IMI - 1, for all M E W.(25)

jEE(M)

In [1], Balas defines a family of strong valid inequalities

for P(a,ao), many of which are facets, based on the following

result. Assume P(a,aO ) is full-dimensional.

Theorem 3. (Balas [1]) The inequality

E 0 xj: E < 0 (26)jEN i I

is a valid inequality for P(a,ao) if (0 = IMI-i for some minimal

cover M for (3), j = 0 for all j E N\E(M), and for j E E(M), =h,

where h is the uniquely defined integer satisfying

a i < aj < E ai , (27)
iEMh -EM h+1

where Mh is the set of the first h elements of M, h = 1, ..., IMI.

If in addition one has

E a a < a., for all j E Nh  h = 0, 1, ... , IMI,
iEM\Mh+l

where

Nh = (j E NI = h), h = O, I, ... , IMI,

then (26) is a facet of P(a,a0 ).

Observe that inequality (21) of Example 2 belongs to this

class of valid inequalities for the knapsack polytope corresponding

to inequality (20).

Letting R* be the set of linear inequalities

ax < a0

0< xj f 1, j E N,

the following result provides a necessary and sufficient condition

for the inequality Ox < 00 derived from the application of the

preceding theorem to some minimal cover for (3) not to belong to

the elementary k-closure of R*.
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Proposition 6. The inequality Ox < 0 belonging to the

class of valid inequalities for P(a,a0 ) defined in Theorem 3 does

not belong to e1 (R*) if and only if there exists an index

h E [j E NI0j > 21 with

Oh
h (a - E a.) > l,(28)

where W = [j E NIj = 13 = JJ2' -I' JiwI3 is written such

that ail > a.2 > "." > ajiw , and Wk is the last k elements in W.

Proof. The inequality Ox < P can be obtained by applying

Theorem 3 to the knapsack inequality ax < a0 with the minimal cover
0+1

M = W . Suppose that such an index h exists. Consider the

fractional point x defined by

1 if j EW ,

a O - Zo aj
j JEW if j = h,

Sah

0 otherwise.

Clearly ax = a0 by construction. Also, since

ah +J a > SEa . > a0

we have
a 0 - P oaj

xh = JEW < 1.
ah

(Observe that this implies that condition (28) can hold only if

Oh > 1.) Now,

ox P + PhXh >

JEW 0h0
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since 0j 1 i, for all j E W and condition (28) holds for h.

By Proposition 5 we have Ox < 0 does not belong to e (R*).

Conversely, suppose that such an index h E [j E NI. 21

satisfying (28) does not exist. It is well known that an optimal

solution x0 to the continuous knapsack problem

max [z = Oxlax < a0, 0 < xj < 1, j E NJ (29)

can be obtained by reordering the indices in N as til, i2, ... , i n]

where 11 > i2 > > , n
aiI  ai2  ain

4.

and defining

1 if j E til, i21 ... I il
1 k-1

a0 - aj

X 9 if j = ik

0 otherwise,

k-l k
where Z a. < a0 < E a

t=l t 0 t=l at

Clearly, both x9 < 1 and 0. > 0. Now, since $x < 0 is a valid
1 k2.kikk

k-i
inequality for P(a,ao), it follows thattt 0 • In fact

t=l

k-i k-i
tE li 0 , for suppose E 0 S0 - 1. Then OX0 < ( 0 - l)+l = 0 ,t~ tt=l t

but consider the point x* E LO,11' defined by supp(x*) = WO0. We

then have that Ox* = %0 > Ox0 which contradicts the optimality of

x0 for (29). We next consider two cases which are collectively

exhaustive.

Case 1. If 1ik = 1, then
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k-i 1

z = t lz it + X i < $ 0 +1

t=l 1t ~k

and x < P. belongs to el(R*).

k-i
Case 2. If > 2, then Za. > E a. since

k t=l 't jEW'O0J

k-1
E p=0 and the i I p = 1, ..., k-i are each defined by

p=l p

condition (27). Therefore,

k-i
0- aiOx + 00 + =1~ - k)

k aik

,a
o  - E 0 aj

<0 + 1

0

since condition (28) does not hold for any j E N such that Oj > 2.

Thus, Ox < %0 belongs to el(R*). 11

The following consequence of Proposition 6 is immediate.

Corollary 6.1. All canonical inequalities [3] implied by

ax < a0 belong to the elementary closure of R*.

We now illustrate Proposition 6 in the following example.

Example 4. Let P* be the knapsack polytope corresponding

to the inequality

9xI + 7x2 + 6x3 + 4x4 + 3x5 + 3x6 + 2x7 + 2x8 + x9 < 10 (30)

taken from [1. The inequality

2xI + x2 + x3  + x5 + x6  <2 (31)

can be derived by the application of Theorem 3 to the minimal cover

(3, 5, 6] for (30), and it belongs to the elementary k-closure of
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(30) together with the constraints 0 < xj 1 1, j 1, 2, ... , 9

since

(10 - (3+3)) = < 1.

However, the inequality

2xI + x 2 + x 3  + x5  + x 7  < 2

derived from the minimal cover [3, 5, 71 does not since
2 i

(0 - (3+2)) = 1- > 1.
(10 9

Although we have characterized those inequalities and hence,

those facets of P(a,aO ) belonging to the family of valid inequalities

defined by Theorem 3 which belong to el(R*), it is not correct to

assume that these are the only type of facets belonging to e (R*).

For instance, consider the following.

Example 5. The inequality

2x 1 + 2x2 + 2x3 + 2x4 + x 5 + x6 + x7 < 4 (32)

is a facet of the knapsack polytope corresponding to

3xI + 3x2 + 3x3 + 2x4 + 2x 5 + 2x 6 + 2x7 < 6. (33)

Using Proposition 5, we can easily determine that (32)

belongs to the elementary k-closure of (33) together with the

constraints 0 < xj < 1, j = 1, 2, ... , 7. However, the facet (32)

does not belong to the class of valid inequalities for the knapsack

polytope corresponding to inequality (33) defined by Theorem 3.

In fact, as shown in [4], the facet (32) can not be sequentially

lifted from any minimal cover of (33).

Il 6II6 . . I I Ai . . ... ll .. . . .,,a, ... .
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addition to exploring the properties of inequalities generated by the procedure,
several. properties of the classes of valid inequalities for the knapsack poly-
tope defined in Balas [1 and Balas and Jeroslow [31 are presented. In particular,
the set of canonical inequalities [31 is shown to belong to Chvatal's elementary
closure.
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